IRF4 Regulates the Ratio of T-Bet to Eomesodermin in CD8+ T Cells Responding to Persistent LCMV Infection
نویسندگان
چکیده
CD8+ T cell exhaustion commonly occurs in chronic infections and cancers. During T cell exhaustion there is a progressive and hierarchical loss of effector cytokine production, up-regulation of inhibitory co-stimulatory molecules, and eventual deletion of antigen specific cells by apoptosis. A key factor that regulates T cell exhaustion is persistent TCR stimulation. Loss of this interaction results in restoration of CD8+ T cell effector functions in previously exhausted CD8+ T cells. TCR stimulation is also important for the differentiation of Eomeshi anti-viral CD8+ effector T cells from T-bethi precursors, both of which are required for optimal viral control. However, the molecular mechanisms regulating the differentiation of these two cell subsets and the relative ratios required for viral clearance have not been described. We show that TCR signal strength regulates the relative expression of T-bet and Eomes in antigen-specific CD8+ T cells by modulating levels of IRF4. Reduced IRF4 expression results in skewing of this ratio in the favor of Eomes, leading to lower proportions and numbers of T-bet+ Eomes- precursors and poor control of LCMV-clone 13 infection. Manipulation of this ratio in the favor of T-bet restores the differentiation of T-bet+ Eomes- precursors and the protective balance of T-bet to Eomes required for efficient viral control. These data highlight a critical role for IRF4 in regulating protective anti-viral CD8+ T cell responses by ensuring a balanced ratio of T-bet to Eomes, leading to the ultimate control of this chronic viral infection.
منابع مشابه
Graded levels of IRF4 regulate CD8+ T cell differentiation and expansion, but not attrition, in response to acute virus infection.
In response to acute virus infections, CD8(+) T cells differentiate to form a large population of short-lived effectors and a stable pool of long-lived memory cells. The characteristics of the CD8(+) T cell response are influenced by TCR affinity, Ag dose, and the inflammatory cytokine milieu dictated by the infection. To address the mechanism by which differences in TCR signal strength could r...
متن کاملThe transcription factor Interferon Regulatory Factor 4 is required for the generation of protective effector CD8+ T cells.
Robust cytotoxic CD8(+) T-cell response is important for immunity to intracellular pathogens. Here, we show that the transcription factor IFN Regulatory Factor 4 (IRF4) is crucial for the protective CD8(+) T-cell response to the intracellular bacterium Listeria monocytogenes. IRF4-deficient (Irf4(-/-)) mice could not clear L. monocytogenes infection and generated decreased numbers of L. monocyt...
متن کاملCutting Edge: IL-12 inversely regulates T-bet and eomesodermin expression during pathogen-induced CD8+ T cell differentiation.
Cytokines are critical determinants for specification of lineage-defining transcription factors of CD4+ T cell subsets. Little is known, however, about how cytokines regulate expression of T-bet and eomesodermin (Eomes) in effector and memory CD8+ T cells. We now report that IL-12, a signature of cell-mediated immunity, represses Eomes while positively regulating T-bet in effector CD8+ T cells ...
متن کاملCutting edge: The transcription factor eomesodermin enables CD8+ T cells to compete for the memory cell niche.
CD8(+) T cells responding to intracellular infection give rise to cellular progeny that become terminally differentiated effector cells and self-renewing memory cells. T-bet and eomesodermin (Eomes) are key transcription factors of cytotoxic lymphocyte lineages. We show in this study that CD8(+) T cells lacking Eomes compete poorly in contributing to the pool of Ag-specific central memory cells...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015